
1

G52CPP
C++ Programming

Lecture 13

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

2

Last lecture

• Function pointers
– Arrays of function pointers

• Virtual and non-virtual functions
– vtable and vptr
– Virtual functions are slower to call, more work

3

What to know about vpointers
• Some equivalent of a vpointer exists in

objects with virtual functions
– Just one pointer is needed in each object

• Only virtual functions appear in vtables
– No need to record non-virtual functions

• Looking up which function to call is slower than
calling a non-virtual function

– But can be done!
1. Go to the object itself
2. Retrieve the vtable (following the vpointer)
3. Look up which function to call from index
4. Call the function

4

Example: virtual functions
#include <cstdio>
class BaseClass
{
public:

virtual char* bar() { return "BaseBar"; }
char* bar2() { return this-> bar(); }

};

class SubClass : public BaseClass
{
public:

char* bar() { return "SubBar "; }
};

BaseClass vtable:

BaseClass::bar()

SubClass vtable:

SubClass::bar()

• Virtual-ness is inherited
• Calling a function from a base class function

is like using a base class pointer to call it

5

Should a function be virtual ?
• If member function is called from a base class

function or through a base class pointer
AND the behaviour should depend on class type
then the member function has to be virtual
– Otherwise when it is called by the base class, or

through a base-class pointer, the base-class version
will be called, not your modified version

• Utility functions will often not be virtual
– Do not expect to change functionality in sub-classes
– Faster to call these functions – no look-up needed
– Makes it easier for function to be inline, which can

make code even faster: no function call needed

6

To be clear … sizeof()

• Functions act on objects of the class type
– Even member functions

• They are not actually in the objects
– The just have a hidden ‘this ’ parameter saying which object

they apply to

• The object is the collection of data
– But also includes any hidden data and pointers that the compiler

adds to implement features (e.g. vtable)

• Adding a member function to an existing class will not
usually make the objects bigger
– Exception: adding the first virtual function may add a vtable

pointer (or equivalent)
– Understand why this is the case!

7

This lecture

• Automatically created methods:
– Default Constructor
– Copy Constructor
– Assignment operator
– Destructor

• Conversion constructors
• Conversion Operators
• Friends

8

Reminders about object
creation

9

Reminders
• If you want to create objects in dynamic memory then you

must go through new (NOT malloc())
– You cannot construct correct objects yourself

• e.g. You cannot set the hidden data, e.g. vpointer to vtable

• You cannot call the constructor manually

• Function overrides
– Provide an alternative implementation in a sub-class
– Non-virtual functions : type of pointer or calling function determines

which function to call
– Virtual functions : type of object the function applies to determines

the function to call
• Has to look up which function to call (e.g. in vtable ?)

• You can use new on basic types (e.g. int)
– By default they are NOT initialised

• Array new [] uses default constructor for objects, and
does not initialise basic types

10

Where to put objects?
• Objects can be created on the stack

MyClass ob1; // Use default constructor
MyClass ob2(3); // Provide initial value
MyClass obarray[4]; // Array of 4 elements

• Or in dynamic memory
MyClass* pOb1 = new MyClass;
MyClass* pOb2 = new MyClass(5);
MyClass* pObArray = new MyClass[6];

• In which case they need deleting
delete pOb1;
delete pOb2;
delete [] pObArray;

• A good rule of thumb (or heuristic):
‘create things on the stack if you can, so that you don’t
need to worry about deleting them ’
– So, when the stack frame is destroyed, the objects will be destroyed

11

Default member functions

12

Automatically generated functions

• 4 functions created by default if needed
– You can make them unavailable (e.g. private)
– Or change their behaviour

• If they are needed, you will get:
1. A default constructor (no parameters needed)
2. A copy constructor (copy one object to another)
3. An assignment operator (= operator)

• We will see general operator overloading later

4. A destructor

13

1: A default constructor

• A constructor which takes no parameters
– Automatically created if and only if you do NOT

create any other constructors

– If you create any constructor, compiler will not
create a default one for you

• The generated default constructor is empty
– Does nothing: lets members construct themselves

(using their default constructors)

• This is why you can still create objects, even
when classes appear to have no constructors

• To prevent this, create your own (private?)

14

2: The Copy Constructor

• The copy constructor is used to initialise one
object from another of the same type

• This includes when a copy is implicitly made:
– Passing object as a parameter into a function

– Returning object by value from a function

• A copy constructor is created by default
– Unless you create your own

• Default behaviour copies each member in turn
– i.e. calls copy constructor for each member

• Note: To avoid having a copy constructor,
declare a private one without implementation
(so the linker causes an error if it is used)

15

Creating a copy constructor
• You can define your own copy constructor,

for example:
MyClass (const MyClass & rhs)

{ … }

• Takes a constant reference to the object
to copy from (or a non-constant reference)

• Has to be a reference! (to avoid needing to copy)

– If not a reference then copying parameter value
(to pass in) means copying the object

– i.e. would need to have copy constructor to
implement the copy constructor

16

All of these are initialisation
• All five of these are initialisation:
MyClass ob1(1, 2, 3);

MyClass ob2 = MyClass(1, 2, 3);

MyClass ob3(ob2);

MyClass ob4 = ob2;

MyClass ob5 = MyClass(ob2);

• First two are same. Last three are same.
• The last three all use copy constructor!
• Why?

– Because it is defined in the standard to be so
– It is faster to initialise than initialise+assign

Identical: call
(int,int,int)
constructor

Identical: call
(const MyClass&)
constructor

17

Example : Copy(ish) constructor
class Example
{
public:

Example(int iVal = 1)
: m_iVal(iVal) {}

// WARNING – not exact copy!
Example(const Example& rhs)
: m_iVal(rhs.m_iVal +1)
{ }

void print()
{

printf("%d\n", m_iVal);
}

private:
int m_iVal;

};

int main()
{

Example eg1;
Example eg2(2);
// Initialisation:
Example eg3 = eg2;
Example eg4;

// Assignment
eg4 = eg2;

eg1.print();
eg2.print();
eg3.print();
eg4.print();
return 0;

}

18

3: Assignment operator
• Used when value of one object is assigned to another
• Assignment operator will be created by default, if needed

– Unless you create one yourself
• Default one does member-wise assignment

– i.e. calls assignment operator for each member
– To prevent this, declare private one without implementation

• Create your own using operator overloading :
MyClass& operator=(const MyClass& rhs)
{

/* Assign the members here */
return *this;

}

• Takes a reference to the one we are getting values from
• Returns a reference to *this , so we can chain these

– e.g.: ob1 = ob2 = ob3 = ob4;

19

Example : Assignment operator
class Example
{
public:

Example(int iVal = 1)
: m_iVal(iVal) {}

Example& operator=(
const Example& rhs)

{
m_iVal = rhs.m_iVal + 10 ;
return *this;

}

void print()
{ printf("%d\n", m_iVal); }

private:
int m_iVal;

};

int main()
{

Example eg5(4);
Example eg6(5);
Example eg7(6);

// Assignment
eg7 = eg6 = eg5;

eg5.print();
eg6.print();
eg7.print();

return 0;
}

20

4: Destructor

• A destructor is created if you do not create
one yourself

• Default destructor does nothing
– Member destructors get called as members

get destroyed
– Destructors for objects are called
– Basic data types (e.g. int) just get destroyed

• No need for destructors

– Pointers just get destroyed
• The thing they point to will NOT !

A ‘default’ implementation
class MyClass

{

public:

// Constructor

MyClass()

{

}

// Destructor

~MyClass()

{

}

// Copy constructor

MyClass(const MyClass& rhs)

// Initialise each member

: i(rhs.i)

{

}

// Assignment operator

MyClass& operator=(

const MyClass& rhs)

{

// Copy each member

return *this;

}

}; 21

22

General rule (rule of three)
• If you need to create one of:

– a copy constructor
– or an assignment operator

then you probably need to create the other,
plus a destructor as well

• Decide: Do you need to implement them?
– If you control resources (or memory on the heap

that you need to free) then you probably do

• Decide: Should users be able to copy the
objects at all and, if so, then will the default
copy mechanism be adequate?

23

Conversion constructors

Reminder: implicit functions
class MyClass

{

private:

int i;

public:

// Constructor

MyClass()

{ }

// Destructor

~MyClass()

{ }

// Copy constructor

MyClass(const MyClass& rhs)

// Initialise each member

: i(rhs.i)

{

}

// Assignment operator

MyClass& operator=(

const MyClass& rhs)

{

// Copy each member

i = rhs.i;

return *this;

}

}; 24

25

Conversion constructor
• A conversion constructor is a constructor with

one parameter. e.g. Constructor for MyClass :
MyClass(char c)
{ … do something with c … }

– Then you can use the following code:
MyClass ob = ‘h’;

• Conversion constructor converts from one type
of object to another
– Can be used implicitly to convert between types

(unless you say otherwise)
• The conversion constructor is very similar to the

copy constructor, i.e.
MyClass(const MyClass& rhs)
{ … Copy the members … }

26

Conversion constructor
class Converter
{
public:

// Conversion constructor
// Convert INTO this class
Converter(int i = 4);

private:
int _i;

};

// Conversion constructor
Converter::Converter(int i)

: _i(i) // Set value
{

cout << "Constructing from int\n";
}

int main()
{

int i = 4;
// Construction from int
Converter c1(5);
Converter c2 = i;

}

27

Forcing explicit construction

• Providing a one-parameter constructor provides
a conversion constructor

• This allows compiler to use it to convert to the
type whenever it wants/needs to do so

• To avoid this, use the keyword explicit
– Constructor can then ONLY be used explicitly

class MyClass

{

public:

explicit MyClass(int param);

};

28

Example of ‘explicit’
struct MyClass
{

MyClass(int);
};

MyClass::MyClass(int i)
{

cout << "Constructor M "
<< i << endl;

}

struct ExplicitClass
{

explicit
ExplicitClass(int);

};

ExplicitClass::
ExplicitClass(int i)

{
cout << "Constructor E "

<< i << endl;
}

int main()
{

// Call constructor
MyClass m1(1);
MyClass m7 = 5;
// Call constructor
ExplicitClass e1(100);
// Cannot do this:
ExplicitClass e7 = 300;

}

struct
defaults to

public

29

Next Lecture

• Inheritance and constructors
– Virtual destructors

• Namespaces and scoping

• Some standard class library classes
– String
– Input and output
– Container classes

