G52CPP
C++ Programming
Lecture 13

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

L ast lecture

e Function pointers
— Arrays of function pointers

e Virtual and non-virtual functions
— vtable and vptr
— Virtual functions are slower to call, more work

What to know about vpointers

e Some equivalent of a vpointer exists In
objects with virtual functions
— Just one pointer is needed in each object
 Only virtual functions appear in vtables
— No need to record non-virtual functions
 Looking up which function to call is slower than
calling a non-virtual function

But can be done!

Go to the object itself
Retrieve the vtable (following the vpointer)

Look up which function to call from index
Call the function

AW R

Example: virtual functions

#include <cstdio>
class BaseClass

{ : BaseClass vtable:
public:
virtual char* bar() { return "BaseBar"; } BaseClass::bar()
char* bar2() { return this-> bar(); } -
I3
class SubClass : public BaseClass SubClass viable:
{ ;
public: P
char* bar() { return "SubBar "; } SubClass::bar()
I3

* Virtual-ness is inherited
e Calling a function from a base class function
IS like using a base class pointer to call it

Should a function be virtual ?

* |f member function is called from a base class
function or through a base class pointer
AND the behaviour should depend on class type
then the member function has to be virtual

— Otherwise when it is called by the base class, or
through a base-class pointer, the base-class version

will be called, not your modified version

 Utility functions will often not be virtual
— Do not expect to change functionality in sub-classes
— Faster to call these functions — no look-up needed

— Makes it easier for function to be inline, which can
make code even faster: no function call needed

To be clear ... sizeof()

Functions act on objects of the class type
— Even member functions

They are not actually in the objects
— The just have a hidden ‘this ’ parameter saying which object
they apply to
The object is the collection of data
— But also includes any hidden data and pointers that the compiler
adds to implement features (e.g. vtable)
Adding a member function to an existing class will not
usually make the objects bigger

— Exception: adding the first virtual function may add a vtable
pointer (or equivalent)

— Understand why this is the case!

This lecture

Automatically created methods:
— Default Constructor
— Copy Constructor
— Assignment operator
— Destructor

Conversion constructors
Conversion Operators
Friends

Reminders about object
creation

Reminders

If you want to create objects in dynamic memory then you
must go through new (NOT malloc())

— You cannot construct correct objects yourself
e e.g. You cannot set the hidden data, e.g. vpointer to vtable

e You cannot call the constructor manually

Function overrides
— Provide an alternative implementation in a sub-class

— Non-virtual functions : type of pointer or calling function determines
which function to call

— Virtual functions : type of object the function applies to determines
the function to call

* Has to look up which function to call (e.g. in vtable ?)
You can use new on basic types (e.g. int)
— By default they are NOT initialised
Array new [| uses default constructor for objects, and
does not initialise basic types 9

Where to put objects?

Objects can be created on the stack
MyClass obl; // Use default constructor
MyClass ob2(3); // Provide initial value
MyClass obarray[4]; Il Array of 4 elements

Or in dynamic memory
MyClass* pObl = new MyClass;
MyClass* pOb2 = new MyClass(5);
MyClass* pObArray = new MyClass|6];

In which case they need deleting
delete pOb1;

delete pOb2;

delete [| pObArray;

A good rule of thumb (or heuristic):
‘create things on the stack if you can, so that you don’t
need to worry about deleting them ’

— So, when the stack frame is destroyed, the objects will be destroyed
10

Default member functions

Automatically generated functions

4 functions created by default if needed
— You can make them unavailable (e.g. private)
— Or change their behaviour

If they are needed, you will get:
1. A default constructor (no parameters needed)

2. A copy constructor (copy one object to another)
3. An assignment operator (= operator)

 We will see general operator overloading later
4. A destructor

12

1: A default constructor

A constructor which takes no parameters

— Automatically created if and only if you do NOT
create any other constructors

— If you create any constructor, compiler will not
create a default one for you

The generated default constructor is empty

— Does nothing: lets members construct themselves
(using their default constructors)

This Is why you can still create objects, even
when classes appear to have no constructors

To prevent this, create your own (private?)

13

2. The Copy Constructor

The copy constructor Is used to initialise one
object from another of the same type

This includes when a copy Is implicitly made:
— Passing object as a parameter into a function

— Returning object by value from a function

A copy constructor Is created by default

— Unless you create your own

Default behaviour copies each member in turn
— l.e. calls copy constructor for each member

Note: To avoid having a copy constructor,
declare a private one without implementation
(so the linker causes an error If it IS used)

14

Creating a copy constructor

* You can define your own copy constructor,
for example:

MyClass (const MyClass & rhs)
{..}

 Takes a constant reference to the object
to copy from (or a non-constant reference)

« Has to be a reference! (to avoid needing to copy)

— If not a reference then copying parameter value
(to pass In) means copying the object

—I.e. would need to have copy constructor to
Implement the copy constructor

15

All of these are Initialisation

e All five of these are Initialisation:

MyClass ob1(1, 2, 3);, - I(?net?::;fﬁ::t)ca"
MyClass ob2 = MyClass(1, 2, 3); constructor
MyClass ob3(ob2); Identical: call

MyClass ob4 = ob2; (const MyClass&)
MyClass ob5 = MyClass(ob2); constructor

 First two are same. Last three are same.
 The last three all use copy constructor!
e Why?
— Because it is defined in the standard to be so
— It Is faster to initialise than initialise+assign 1

Example : Copy(ish) constructor

class Example iInt main()
{ {
public: Example egl;
Example(intiVal =1) Example eg2(2);
: m_iVal(ival) {} /I Initialisation:
Example eg3 = eg2;
Il WARNING - not exact copy! Example eg4;
Example(const Example& rhs)
: m_iVal(rhs.m_iVal +1) /[l Assignment
{1} eg4 = eg2;
void print() egl.print();
{ eg2.print();
printf("%d\n", m_ival); eg3.print();
} eg4.print();
private: return O;
int m_iVal, }
}; 17

3: Assignment operator

Used when value of one object is assigned to another

Assignment operator will be created by default, if needed
— Unless you create one yourself

Default one does member-wise assignment
— l.e. calls assignment operator for each member
— To prevent this, declare private one without implementation

Create your own using operator overloading
MyClass& operator=(const MyClassé& rhs)

{

[* Assign the members here */
return *this;

}
Takes a reference to the one we are getting values from

Returns a reference to *this , so we can chain these
— e.g.. obl =0b2 = 0b3 = ob4;

18

Example : Assignment operator

class Example

{

public:
Example(int iVal = 1)
:m_iVal(ival) {}

Example& operator=(
const Example& rhs)
{
m_iVal =rhs.m_iVal
return *this;

}

void print()

{ printf("%d\n", m_iVval); }
private:

int m_iVal,

%

+ 10 ;

iInt main()

{
Example eg5(4);
Example eg6(5);
Example eg7(6);

I/l Assignment
eg/ =egb =egos;

eg5.print();
eg6.print();
eg?’.print();

return O;

19

4: Destructor

* A destructor Is created If you do not create
one yourself

« Default destructor does nothing

— Member destructors get called as members
get destroyed

— Destructors for objects are called
— Basic data types (e.g. int) just get destroyed
* No need for destructors

— Pointers just get destroyed
e The thing they point to will NOT !

20

A ‘default’ implementation

class MyClass

{
public:

/| Constructor
MyClass()

{
}

/| Destructor
~MyClass()

{
}

// Copy constructor

MyClass(const MyClass& rhs)
/I Initialise each member
i(rhs.i)

I/l Assignment operator
MyClass& operator=(
const MyClass& rhs)

// Copy each member
return *this;

21

General rule (rule of three)

 |f you need to create one of:
— a copy constructor
— Or an assignment operator
then you probably need to create the other,
plus a destructor as well

e Decide: Do you need to implement them?

— If you control resources (or memory on the heap
that you need to free) then you probably do
 Decide: Should users be able to copy the
objects at all and, if so, then will the default
copy mechanism be adequate?

22

Conversion constructors

Reminder: implicit functions

class MyClass
{
private:

int i;

public:
/| Constructor
MyClass()

{1}

/| Destructor
~MyClass()

1}

// Copy constructor

MyClass(const MyClassé& rhs)
I/ Initialise each member
ci(rhs.i)

{

}

/I Assignment operator
MyClassé& operator=(
const MyClassé& rhs)

{
// Copy each member
| =rhs.i;
return *this;

}

24

Conversion constructor

e A conversion constructor Is a constructor with
one parameter. e.g. Constructor for MyClass :

MyClass(char c)
{ ... do something with c ... }
— Then you can use the following code:
MyClass ob = ‘h’;
e Conversion constructor converts from one type
of object to another

— Can be used implicitly to convert between types
(unless you say otherwise)

* The conversion constructor is very similar to the
Copy constructor, I.e.
MyClass(const MyClassé& rhs)
{ ... Copy the members ...}

25

Conversion constructor

class Converter

{

public:
/[Conversion constructor
/[Convert INTO this class
Converter(inti=4);

private:
int _i;

J

/I Conversion constructor
Converter::Converter(int i)

() /Il Set value
{

cout << "Constructing from int\n";

}

int main()
{
inti=4;
/[Construction from int
Converter c1(5);
Converter c2 =1i;

26

Forcing explicit construction

e Providing a one-parameter constructor provides
a conversion constructor

* This allows compiler to use it to convert to the
type whenever it wants/needs to do so

 To avoid this, use the keyword explicit
— Constructor can then ONLY be used explicitly

class MyClass

{

public:

%

explicit MyClass(int param);

27

Example of ‘explicit’

struct MyClass | Struct
{ defaults to
MyClass(int); public

%

MyClass::MyClass(inti)
{

cout << "Constructor M "

<< | << endl;

}

struct ExplicitClass

{
explicit
ExplicitClass(int);

ExplicitClass::
ExplicitClass(int i)
{

cout << "Constructor E "
<<I<<endl

}

int main()

{
/[Call constructor
MyClass m1(1);
MyClass m7 = 5;
/[Call constructor
ExplicitClass e1(100);
/[Cannot do this:
ExplicitClass e7 = 300;

28

Next Lecture

e |nheritance and constructors
— Virtual destructors

« Namespaces and scoping

e Some standard class library classes
— String
— Input and output
— Container classes

29

